Penanganan Missing Value dan Perbandingan Performa Algoritma Naïve Bayes serta Algoritma Decision Tree dalam Kelulusan Mahasiswa
Kata Kunci:
Algoritma Decision Tree, Imputasi, Kelulusan Mahasiswa, Naïve Bayes, Missing ValueAbstrak
Penelitian ini membahas penanganan missing value serta perbandingan performa algoritma Naïve Bayes dan Decision Tree dalam memprediksi kelulusan mahasiswa. Dataset yang digunakan mencakup data akademik mahasiswa yang dimanipulasi untuk mensimulasikan missing value. Metode imputasi, seperti Mean Imputation, K-Nearest Neighbors, dan Iterative Imputation, diterapkan untuk menangani nilai yang hilang. Evaluasi dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa algoritma Decision Tree memiliki performa lebih unggul dibandingkan Naïve Bayes, dengan akurasi mencapai 92,1% dibandingkan 85,3% pada Naïve Bayes. Keunggulan ini menunjukkan bahwa Decision Tree lebih efektif dalam menangkap pola data dengan hubungan antar fitur yang kompleks. Studi ini memberikan kontribusi terhadap pengembangan metode prediksi berbasis data untuk mendukung kebijakan akademik, termasuk penanganan missing value yang optimal dan pemilihan algoritma yang tepat.